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Recognition scheme 

 
 

 Vocabulary Tree defined using an offline unsupervised training stage. 

 

 Hierarchical scoring based on Term Frequency Inverse Document 

Frequency (TF-IDF). 

 

 Local features  Colored Scale Invariant Feature Transform (CSIFT). 

 

Multiview search Using multi-view images to search. 

 

 Fast geometric re-rank shorten the list of candidates for the complex 

geometric verification. 

 

Geometric consistency check reduces false positives and allows 

spatial localization of the object within the query frame. 
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Vocabulary Tree 

• The vocabulary tree defines a hierarchical 

quantization built by hierarchical k-means 

clustering 
  A large set of representative descriptor vectors are used in the 

unsupervised training of the tree. 

 K defines the branch factor of the tree. 
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Advantages of Vocabulary Tree 

2002 

2001 

2000        

•the tree directly defines the quantization 

•the quantization and the indexing are therefore fully integrate 

•representation of an image patch is simply one or two integers 

•more efficient training through a hierarchical k-means approach 

•on-the-fly insertion of new objects into the database 

•speed up  queries via inverted index compression 

Efficient 

Compact 

• allows a larger and more discriminatory vocabulary to be 

used efficiently, which leads to a dramatic improvement in 

retrieval quality 

Better retrieval quality 
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Tatiana Tommasi - Scalable Recognition with a Vocabulary Tree 

Building the Vocabulary Tree 

… 

 k=3  L=2 

… 

• … 

… 
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Definition of Scoring 

 Number of the descriptor 
vectors of each image 
with a path along the 
node i (ni query, mi 
database) 

 
 
 Number of images in the 

database with at least 
one descriptor vector 
path through the node i 
(Ni ) 

 Ni=2 

m_Img1=1 

m_Img2=1 

Ni=1 

m_Img1=2 

m_Img2=0 
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 Weights are assigned to each node 
 
 
 
 Query and database vectors are 

defined according to their assigned 
weights 

 
 
 
 Each database image is given a 

relevance score based on the 
normalized difference between the 
query and the database vectors 

 

Definition of Scoring 
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Implementation of Scoring 

• Analogy with text retrieval inverted file systems and 

document rankings are used. 

 

• Every node in the vocabulary tree is associated with an 

inverted file. 

 

• Inverted files stored the id-numbers of the images in 
which a particular node occurs and the term frequency of 
that image. 

 

• Decrease the fraction of images in the database that 
have to be explicitely considered for a query. 
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Hierarchical TF-IDF scoring 

• TF-IDF value increases proportionally to the number of 

times a word appears in the document, but is offset by the 

frequency of the word in the corpus, which helps to control 

for the fact that some words are generally more common 

than others. 

 

• The leaf nodes are simply much more powerful than the 

inner nodes. 

 

• In the experiment, I just use the score of leaf nodes. 
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An improved method to compute IDF 

 
A large representative database to determine the IDF(entropies) 

 
 Track the path of each sift feature when building the tree. 

 

 Get a path matrix when tree completed. 

    Path  matrix: one column per sift feature and height equal to the depth of the tree. Each 

column encodes the branch of the tree that correspond to each sift feature. 

 

 Compute the IDF using the matrix and the sift number of each image. 

 For each image i in database: 

  get the index of each sift feature in leaf node (index(i)=∑(Path(m,n)-1)*power(K,depth-m)). 

  get a unique index array of each image. (unique(index)) 

 Calculate the number of images with at least one sift feature path through each node. 

 Entropy weight= 
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Local features-CSIFT 

• SIFT has been proven to be the most robust 

local invariant feature descriptor. 

 

• SIFT is designed mainly for gray images. 

However, color provides valuable information in 

object description and matching tasks. 

 

• The built Colored SIFT (CSIFT) is more robust 

than the conventional SIFT with respect to color 

and photometrical variations. 
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Multiview Search 

• How to distinguish different views?  

 

• How to select the optimal views?  

 

• How to use distinctive views to achieve 

more accurate search? 
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Algorithm for  selecting optimal views 

1.Obtain many views of the object from different view points 

from the video frames. 

 

2.Extract the SIFT feature of the images obtained in step  1.  

 

3.Select a threshold value I which will be used to define 

which views are similar. If the matching of SIFT feature 

between two views is less than t they are marked as similar. 

 

4.Assign a rank  to each view  defined as the number of 

views that are similar to it. 
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 Algorithm for  selecting optimal views 

5.Sort all the views according to their ranks. 

 

6.Make a sorted list L of all views. Each view will have a 

pointer to other views similar to it. 

 

7.Start from the top of L and place the first view in the set C 

of characteristic views. Remove all views similar to the first 

view from L to obtain a reduced list. 

 

8.Move down the reduced list L and repeat the procedure 

in 7 until the end of L is reached. Now we get the optimal 

views. 
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Multiview scoring method 

 
Object recognition accuracy can be improved when 

information from multiple views is integrated. 

 Get the scores of each query result. 

     [Sq1,d1, Sq1,d2, Sq1,d3, …………… Sq1,dN  ] 

     [Sq2,d1, Sq2,d2, Sq2,d3, …………… Sq2,dN  ] 

      ……. 

     [Sqv,d1, Sqv,d2, Sqv,d3 …………… Sqv,dN  ] 

 For each image in the database, add the scores of each 

query image to get a new score. 

 Sort the score to get the ranked query results. 
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Some improvements 

If we can get some prior information about 

each view, we can assign different weights 

to different view to get better results. 

 

We can add weights to the score of the 

top 100 results of each query. 
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Some improvements 
In the paper Less is More: Efficient 3-D Object Retrieval With Query View Selection, it 

suggests a real-time user interactive scheme to retrieve 3-D objects.  
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Intelligent query 

• The views selected in an unsupervised manner will not 

be informative enough. 

• It incrementally selects a subset of query views based on 

the users’ relevance feedback. 
 First perform clustering to obtain several candidates.  

 Then incrementally select query views for object Matching.  

 In each round of relevance feedback, only add the query view that is judged 

to be the most informative one based on the labeling information. 

  In addition, an efficient approach is proposed to learn a distance metric for 

the newly selected query view and the weights for combining all of the 

selected query views. 
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Geometric re-ranking 

• Fast geometric re-ranking can shorten the list of candidates for the 

complex geometric Verification. 

• A geometric similarity score of the query image and the candidate 

image is generated. This score can be computed efficiently by 

comparing the geometric properties of the VT visual word matches a 

location geometric similarity scoring method that is invariant to 

rotation, scale, and translation. 

• Location geometric similarity scoring 
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Geometric verification 

The GV finds a coherent spatial pattern between 

features of the query image and the candidate 

database image to ensure that the match is 

plausible. 

The GV step rejects all matches with feature 

locations that cannot be plausibly explained by a 

change in viewing position. 

The geometric transform between query and 

database image is estimated using robust 

regression techniques such as RANSAC or the 

Hough transform. 
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Database 

 Database for training Vocabulary Tree: 

         Caltech256, 10000 images 

 

 Database  for recognition: 

        Caltech256, 30 objects, 1500 images 
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Caltech-256 

 
Smallest category size now 80 images 

About 30K images 
– Harder 

– Not left-right aligned 

– No artifacts 

– Performance is halved 

– More categories 

– Performance are halved (even less) 

– New and larger clutter category 
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Vocabulary tree 

• Training images:10000 images 

• SIFT feature: 4544348 sift feature 

• Cluster: 10 

• Depth: 4 

• Visual words: 10000 

• Iteration of k-means:50 
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Time Complexity 

• Extract SIFT feature(10000images): about 1 d 

 

• Read SIFT feature from files: about 2 hours 

 

• Building the vocabulary tree: about 1 hours 

 

• Query in the database: about 10s 
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Distance measurement 
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Cosine distance  
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Sift match 

the number of sift of image1 is:1507 

the number of sift of image2 is:2934 

the number of matched sift is:58 

the number of sift of image1 is:1507 

the number of sift of image2 is:2334 

the number of matched sift is:39 



www.themegallery.com 

Depth of vocabulary tree 
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Depth of vocabulary tree 
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Depth of vocabulary tree 

The larger vocabulary tree(the  large number of 

leaf nodes), the better retrieval quality. 

 
 

In principle, the vocabulary size must eventually grow too large, so 

that the variability and noise in the descriptor vectors frequently 

move the descriptor vectors between different quantization cells. 
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Single view search (view 1) 
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Single view search(view 2) 
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Single view search (view 3) 
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Single view search (view4) 
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Multiple views search 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

recall

p
re

c
is

io
n

Precision-recall (AP = 50.03 %)

 

 
PR

random classifier

Top 100 results 



www.themegallery.com 

Single view & multiple view search 

 

 

Single  

view1 

Single  

view2 

Single  

view3 

Single   

view4 
3 views 3 views 

(weight) 

4 views 4 views 
(weight) 

49.39 23.41 44.55 47.66 49.41 50.03 50.39 50.61 

Average precision(%) 
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view1

view2

view3

view4

3 views

4 views

Curves showing percentage (y-axis) of 

the query images that make it into the 

top x  (x-axis) frames of the query for a 

1500 image database. The curves are 

shown up to 100 images in the 

database . 
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Multiple view & single view 

• The average precision is better when 

using multiple views. 

 

• It shows that when using multiview search, 

correct images from the database make it 

to the very top of the query better. 
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Voting scheme 

To do object recognition, we can first label 

the database images and then cast a vote 

on the top 100 results.  

 The vote of the 30 objects:  

1     5     2     0     3     0     4     4     2     5     

1     2     0     1     0    32     2     3    3     0     

0     0    11     1     0     1     0     0     1    16 

The 16th (in caltech256)and 30th (photos 

by myself)objects are both eyeglasses. 
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Other ideas---1 

• Max pooling 

 
 

 

 

  

 

 

• If we do max pooling instead of TF (Term Frequency) , what’s the 

result? 

In the paper Analysis of Feature Learning and Feature 

Pooling for Image Recognition, the author indicated that max 

pooling should be preferred over average pooling when 

features have a low probability of being active (e.g., with 

large codebooks) and the pool cardinality is large enough. 
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Single view- view1 
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Single view- view2 
Top 50 results 
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Single view- view3 
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Max pooling using multiple views 
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Max pooling Results 

• Compared with the result of TF-IDF 

scoring method, the search result of Max 

pooling is better. 

 

• Reason: The codebook is much larger 

(10000 visual words) than the number of 

sift feature, and the features are not active 

with the codebook, so max pooling works 

well. 
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Other ideas---2 

In the paper 80 million tiny images: a large dataset 

for non-parametric object and scene recognition, the 

author indicated that we can achieve good 

recognition result even when we lower the 

resolution of the images in the database. 

The tiny image can reduce some details in 

the image, which may be good for the 

search for objects of same class. 
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Original database & tiny database 

Curves showing percentage (y-

axis) of the query images that 

make it into the top x  percent (x-

axis) frames of the query for a 

1500 image database. The 

curves are shown up to 6% 

images in the database . 
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Original database & tiny database 

• In the experiment, I do visual search based on 

the database of the original images and tiny 

images.  

• It show that for object with complex structure, 

such as computer, the tiny image database can 

achieve better search result.  

• While for object with simple structure, the result 

isn’t improved.  

• Actually, the sampling process is in the SIFT 

feature extract process (DOG). So maybe we 

can make some change in the sift parameter.  
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Other ideas ---3 

• Using all the features of the multiple view images as a 

whole, and then query in the database. 
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Other ideas-4 

• There is feature redundancy across different views. We can build a 

model to  select features to reduce the redundancy based on 

Gaussian model or Mutual Information: Criteria of Max-Dependency, 

Max-Relevance, and Min-Redundancy. 
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Suitability for visual search on CalTech256 

 Actually, CalTech256 is not suitable for visual search. 

The difficulty lies in capturing the variability of 

appearance and shape of different objects belonging to 

the same class, while avoiding confusing objects from 

different classes. So I use the simple object—

eyeglasses--as query object. 

 

 To do object recognition in CalTech256, it’s better to use 

supervised method, such as SVM classifier. 

 

 For multiview object recognition, we can first classifier all 

the single view image and then cast a vote on all the 

results to get the final result. 
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SVM classifier  
Scores
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For mobile visual search 

1.Streaming recognition 

 

An efficient motion  estimator is used to determine 

camera movement, which enables to selectively send 

query data to the server only when needed and to 

track an object after initial recognition. 
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For mobile visual search 

2.Use SURF or CHoG feature to speed up feature 

extraction and reduce query latency in mobile image 

retrieval systems. 

3. Use BFOS Algorithm to prune vocabulary tree until 

it reaches the subtree with the fewest number of 

leaves that achieves a given rate distortion trade-off. 

4. Use a soft binning scheme or sparse coding to 

mitigate the effect of quantization errors for a large 

VT. 
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For Mobile visual search 

5. Use run-length encoding algorithm to 

encode the tree histogram. 

6. Inverted file compression to reduce the 

memory storage. 

7. Build Multiview Vocabulary Trees for 

Severe Perspective Queries. 
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